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STRUCTURE OF A COMPRESSION SHOCK IN TWO-PHASE MEDIA 

A. M. Grishin and G. G. Tivanov UDC 532.529:518.5 

Shockwaves originating in supersonic two-phase flows can be considered to consist of two 
zones - the compression shock that is realized at the shock velocity greater than the frozen 
speed of sound [i, 2], and the relaxation zone. Although the structure of the relaxation zone 
has been investigated in sufficient detail [1-5], the structure of the compression shock has 
not. 

It is generally understood that a lifting medium is described by Hugoniot relationships 
during passage through a shock, while particles "ignore" the compression shock. Meanwhile, 
experimental data [3] display a sufficiently strong influence of the compression shock on 
heterogeneous inclusions if the particle size does not exceed 20-25 l~m. 

For sufficiently intensive shocks, shocks originate in the domain with as large as a two- 
phase medium flows around a solid boundary, where the stream parameters change substantially 
within distances commensurate with the dimensions of the inclusions. Models of a continuous 
medium do not hold in these zones and the structure of such flows can be investigated only 
within the framework of kinetic theory [6]. On the other hand , for a weak shock intensity the 
thickness of the compression shock can exceed the dimensions of the inclusions by an order and 
more, which permits utilization of the approximation of a continuous medium to investigate the 
compression shock structure. 

Here we consider the structure of a compression shock by using the kinetic and hydrody- 
namic descriptions of a two-phase medium. It is shown that the presence of particles results 
in an increase in the compression shock thickness, where the particles exert the greatest in- 
fluence on the density and velocity profiles. It is found that taking account of the dissipa- 
tive components on both the kinetic and the hydrodynamic level broadens the limits of applic- 
ability of these approaches somewhat. 

i. Since a compression shock especially influences fine particles, for simplicity in 
our analysis we shall henceforth limit ourselves to a study of small size inclusions (not more 
than i0 ~m, for instance), which permits utilization of the diffusion approximation in indi- 
vidual cases. 

We consider a two-phase medium as a dynamic system of interacting particles. We write 
the kinetic ~squations for the particles of each phase (subscripts i, j) in the form 

Dli/Dt = Q(]i, b).  (1.1) 

Here Q is th,~ interaction integral, and f(t, x, v) is the particle distribution function of 
one phase. 

Two interaction scales, short-range and sliding collisions, can be separated for an anal- 
ysis of Q in application to a two-phase mixture [7]. For the short-range Collision, direct 
contact occurs between two (or more) particles with an exchange of mass, momentum, and energy. 

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 
101-108, March-April, 1987. Original article submitted February 12, 1986. 
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During sliding collisions there is no interparticle contact, but an exchange of momentum and 
energy is effected by means of the particles of the other phase. On the hydrodynamic level, 
this is analogous to the interaction of two or more closely located particles through a lift- 
ing medium [8] for heterogeneous inclusions. Representing the integral as the sum 

Q = Q* + G  

where Q* is the contact interaction integral and Q is the component taking account of the 
sliding collisions, and considering the effect of intermediate collisions as a continuous se- 
quence of small random changes in the velocity and coordinates, we obtain [7] 

8 

g 

Here v i s  t h e  v e l o c i t y ,  and v~ i a r e  t h e  c o e f f i c i e n t s  o f  f r i c t i o n  r and d i f f u s i o n  d in  t h e  
3 phase  s p a c e  (p ,  q ) .  A s i m i l a r  e x p r e s s i o n  f o r  Q can be o b t a i n e d  i f  t h e  s o u r c e  in  t h e  Langev in  

e q u a t i o n  i s  c o n s i d e r e d  a f u n c t i o n  o f  n o t  o n l y  t h e  v e l o c i t y  bu t  a l s o  o f  t h e  c o o r d i n a t e s  [ 9 ] ,  
which d e n o t e s  t a k i n g  a c c o u n t  o f  d i s s i p a t i v e  p r o c e s s e s  a t  t h e  m i c r o l e v e l .  The c o e f f i c i e n t s  
~ i have  t h e  form ( t h e  d e r i v a t i o n  o f  t h e s e  c o e f f i c i e n t s  i s  t h e  same as f o r  t h e  F o k k e r - P t a n c k  
e ~ u a t i o n s  [ 1 0 ] ,  and i s  n o t  p r e s e n t e d  h e r e )  

a~ = Ma ~ IAp2dy, ~ = M, ; ]hq'dy, (1.2)  

a~= M a ~ IApdy, a~= M a y /Aqdy* y = {x, v}, 

where Ap, Aq a r e  t h e  c h a r a c t e r i s t i c  m a g n i t u d e s  o f  t h e  momentum and c o o r d i n a t e s ,  and M i i s  t h e  
i n t e r a c t i o n  t r a n s f o r m a n t .  

I f  t h e  k i n e t i c  e q u a t i o n  can be w r i t t e n  as  

D]/Dt Q/s 
(E i s  a s m a l l  q u a n t i t y ) ,  t h e n  a c c o r d i n g  t o  t h e  method o f  S t r u m i n s k i i  [ 1 1 ] ,  when u s i n g  t h e  Max- 
w e l l  d i s t r i b u t i o n  in  a z e r o  a p p r o x i m a t i o n ,  we f i n d  

a~ = hpAq•  • = 312 (2kT/m)~ 
where I i s  t h e  Bol tzmann c o n s t a n t ,  m i s  t h e  p a r t i c l e  mass ,  T i s  t h e  t e m p e r a t u r e ,  and r i i s  

3 
t h e  c o n s i s t e n c y  c o e f f i c i e n t  d e t e r m i n e d  f rom e x p e r i m e n t a l  d a t a  o r  a d d i t i o n a l  h y p o t h e s e s .  

We w r i t e  t h e  i n t e g r a l  Q* in  t h e  form [12] 

N 

Q* = ~.a y (W-l] -- W+]]) dydy, 

W ~ =  ~, ~ M= i v.nlvdv, 

where n i s  t h e  normal  N i s  t h e  t o t a l  number o f  p a r t i c l e s ,  ~, d e n o t e s  summation o v e r  a l l  t h e  

a r r i v i n g  ( o r  d e p a r t i n g )  p a r t i c l e s  a t  t h e  t ime  o f  c o n t a c t  i n t e r a c t i o n .  

I f  t h e  i n t e r a c t i o n  t r a n s f o r m a n t  Ma i s  c o n s i d e r e d  f o r  s p e c u l a r  i n t e r a c t i o n  o f  p a i r s  o f  
p a r t i c l e s ,  t h e n  Q* d e g e n e r a t e s  i n t o  t h e  Bol tzmann i n t e g r a l  [ 1 3 ] .  

2. To i n v e s t i g a t e  t h e  s t r u c t u r e  o f  a c o m p r e s s i o n  shock  we i n i t i a l l y  u se  t h e  M o t t - S m i t h  
a p p r o a c h  [14] a c c o r d i n g  t o  which 

1= a_l_ + a+/+, a_ --F a+ = t. (2.1)  

Here a_ and a+ are weight coefficients, f_ and f+ values of the distribution function before 
and after the shock. Taking the square of the velocity v 2 as the trial function in the gen- 
eralized transport equation (which is obtained by traditional means and is not presented 
here), we obtain in conformity with the relations (2.1) 

da_ = fia_ (1 - -  a_) - -  2~p_v_  - -  6n~ (a+p+ + a_p_),: 
dx 

fi = aI2p_v_R(T_ -- T+)l-Xs �9 ( 2 . 2 )  
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a = ~ (v ~ - -  v '2) ]+ (v) ]_ (v) B (O, V) dOdsdv, dv, 

B(O, V) = s(O, V)V sin 0,: 

where s is the differential scattering section, V is the thermal velocity, the subscript * is 
mute, and p is the density. Assumptions are made in deriving (2.2) which are used later: the 
flow of the two-phase medium is stationary and one-dimensional, the interaction processes are 
Markovian in nature, the interaction transformants correspond to a specular collision, there 
are no phase transformations, the coefficients vj i are calculated under the assumption that 

the distribution functions in (1.2) are Maxwellian, and the two-phase medium is considered in 
the diffusion approximation. 

The last two assumptions are made to simplify the analysis. The solution of (2.2) has 
the form 

l -[- [~* -[- ([~* - - l )  exp (2/[~x*) 
l -~- exp (2/[3x*) " 

(2.3) 
l ~ = ~ +  (-~--~)~,: a + - - - - i - - a _ , :  ~ = 6 x ~ ( p _ - - p + ) , ;  

= 6 ~ p + ~  [3" = -~-~,~ x* = x + const .  

The coordinate x* is introduced for convenience in the selection of the origin of the coordi- 
nate system. Integral relationships on the shock, whose derivation is presented below, are 
used in solving (2.2). Taking account of the solution (2.3) and the integral relationships 
on the shock, the equations for the running values of the parameters on the compression shock 
are as follows: 

p(x) = p_[p+]p_ -[- a_( i  - -  p+/p_)],  v(x) = p_v_Zp(x),; 

e (x) = e_ + v2_/2 - -  v ~ (x)/2. 

The coefficient Cpd is determined from (2.3) and the condition s for the velocity in the com- 
pression shock by using experimental data [3]. It is later assumed that all the coefficients 
are constant and equal to ~pd. 

Taken as the momentum scale Ap is the sound velocity in a heterogeneous mixture 

Ap = m V  dp*/dp, 

multiplied by the particle mass m, and the particle diameter of heterogeneous inclusions as 
the characteristic dimension Aq. 

The Liepmann method [15] is used within the framework of the kinetic theory to study the 
shock structure in the second approach, whereupon (I) is reduced to the form 

d _q dl + !  

w i t h  the  boundary c o n d i t i o n s  f ( x  = • = O. Wi thou t  examin ing d i f f e r e n t  p a r t i c u l a r  cases o f  
the  a n a l y t i c  s o l u t i o n  o f  ( 2 . 4 ) ,  which are  p resen ted  in  [ 1 6 ] ,  i t  i s  so lved  n u m e r i c a l l y  w i t h  
i t e r a t i o n s  in  f0 and v, where t he  Maxwel l  d i s t r i b u t i o n  i s  aga in  used f o r  t he  f u n c t i o n  f in  a 
zero approximation. 

Since the appropriate moments and integral relations for the shock must be used in the 
Mott-Smith method, it is necessary to represent the results in terms of hydrodynamic variables 
(including also for the Liepmann method). We note that the majority of experimental data on 
the shock structure is presented in precisely hydrodynamic variables. 

The characteristics of a two-phase flow in a compression shock, obtained by the Mott- 
Smith and Liepmann methods, respectively, for different external stream parameters are repre- 
sented in Figs. 1 and 2; all the quantities are referred to the parameters ahead of the shock. 
Polystyrene ])articles of 2 ~m diameter were selected as heterogeneous inclusions. Given for 
comparison in Fig. 1 are the curves 6-8 in v, T, p for pure air for M_ = i0, I, 2, 4 in p, T, 
v for M_ = i0 for a two-phase flow; 3, 5 in T, v for M_ = 5. The mean free path was deter- 
mined from the relationship 
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It follows from Fig. 1 that the presence of particles results in weak asymmetry in the density 
and velocity profiles in the shock upon application of the Mott-Smith method, and on the other 
hand, diminishes the asymmetry in the density profiles when using the Liepmann method (Fig. 2; 
see Fig. 1 for explanation). In both approaches the heterogeneous phase results in an increase 
in shock thickness, which is computed from the dependence 

L P+-- p- 
= (dp/dx)max" 

If a criterion is introduced that characterizes the degree of particle influence 

F* Ir~ r /r-  I 
= r 0 / r  n , ( 2 . 5 )  

where  F i s  t h e  hyd rodynamic  p a r a m e t e r  whose p r o f i l e  i s  c o n s i d e r e d ,  r 0 i s  t h e  v a l u e  f o r  t h e  
l i f t i n g  medium w i t h o u t  i n c l u s i o n s ,  and r n i s  t h e  v a l u e  f o r  t h e  homogeneous medium b e f o r e  t h e  
shock ,  t h e n  i t  i s  seen  t h a t  t h e  p a r t i c l e s  e x e r t  t h e  g r e a t e s t  i n f l u e n c e  on t h e  v e l o c i t y  and 
d e n s i t y .  The change  in  t h e  t e m p e r a t u r e  p r o f i l e  b e c a u s e  o f  t h e  p r e s e n c e  o f  p a r t i c l e s  i s  i n s i g -  
n i f i c a n t :  1-57o f o r  b o t h  a p p r o a c h e s  f o r  M = 1 . 0 1 - 1 0 .  

3. I t  i s  seen  from an a n a l y s i s  o f  F i g s .  1 and 2 t h a t  w i t h i n  t h e  f ramework o f  t h e  d i f f u -  
s i o n  a p p r o x i m a t i o n  w i t h  s m a l l  f r e e  s t r e a m  Mach numbers t h e  e x t e n t  o f  t h e  c o m p r e s s i o n  shock  con-  
s i d e r a b l y  e x c e e d s  t h e  mean f r e e  p a t h .  The shock  i s  s t i l l  n o t  b l u r r e d  h e r e .  C o n s e q u e n t l y ,  
i t  i s  e x p e d i e n t  t o  c o n s i d e r  t h e  shock  s t r u c t u r e  in  t h e  h y d r o d y n a m i c  f o r m u l a t i o n  a l s o .  T h e r e -  
f o r e  we e x p r e s s  t h e  s t a t i o n a r y  mass ,  momentum, and e n e r g y  c o n s e r v a t i o n  e q u a t i o n s  in  o n e - d i m e n -  
s i o n a l  f o r m u l a t i o n s ,  which  a r e  o b t a i n e d  as t h e  a p p r o p r i a t e  moments o f  t h e  k i n e t i c  e q u a t i o n  

( 1 . 1 )  ( t h e  n o r m a l i z a t i o n  c o n d i t i o n  i s  J ' ] d u = p ) :  

~qd2p ~ q  dp, __ddz pu = A* (1) + A TM (l)_ + AQ (i) + s,v~,a ~ - -  gv'r -d~" ( 3 .1 ) 

d ( 4 du'~ 
d-"-~, puz + Pp  - -  -3  ~ ~ - )  = A* (u) + A W (u) + An (u) + ( 3 . 2 )  

�9 -}- [ -  Tl'fl~ d du d2u du q d2pu 
~ P-~x - -  Tl'~PnPd --dx ~ - -  PTl~Pr ~ + glV~d " dx 2 

I . . .  

d du gzvg q d du q d2u q d q d u ]  
- -  g z ~  "-~ P - ~  - -  - ~  p - ~  + g t v p ~  ~ - -  g~u~ ~ pu + glPu~--~ ] ;  

dz 3 lxu-"~ - (E) + (E) + 

d dE p d~E p d E  + ~q d2Ep 
- -  g z ~  d + A~ (E) + - -  zlva~ "~  P --dZ p'rzv~a ~ - -  p'~lgr dz dx z 

a q d dE q d dE d~E q dpE 
- -  e,l~ad " ~  p'--d~ - -  g l ~ d - ~ x  P'-d-xx + pgl~n~ ~ - -  g ~ r  " ~  + 

dE ) 
+ gzP~--d-Zx ~ P =  cPePg + CPpPp~ E = e + u~'/2~ 
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Here Ti, 
pressure. 

e = ~ e e  +r  ~'o = q)gXg + %,;~m: pu = % (pu)e + % (pu)>~ 

~ = ~%,: g~v = g~gv,: A* (~2) = S ~Q*du, 

A TM (Xb)= y ,Qwdu.,: An (,.p)= S ~.Q~du- 

gi  a r e  t h e  p r o c e s s  c h a r a c t e r i s t i c  t ime  and l e n g t h ,  ,~ i s  t h e  v i s c o s i t y ,  
After conversion of (3.1)-(3.3), we have the first integrals 

dp 
P (~ + g ' ~ )  - g ' ~  ~ 7  = p - ~ -  + (D~; 

and Pp is the 

(3.4.)  

4 ) du dp u 
pu (~ + mug  + , ~ p  + mv~p - y ~ ~ - m ~ u  v T  + P~ + & = P-u~- + P~- + (D ; 

puE - -  ~o dT 4 ~tu du p dE q dEp 

. q dE 
+ z . g ~ d p - - ~  + g~n~pE + dE = p_u_E_  + g~a~p_E_ + (Dz, 

(3.5) 

(3.6) 

where 

du ~ (pTl~2a~d2u + p du d2u q du ~ 
dx2 pTlnr "~- Paqgl~ dz 2 . . . . .  glpa~ -~x ) dx; 

- -  Pglw~d) ~z~ + (P*la~ --  q dE 

3 

E a,* = A* ( , )  + A "  ( ,)  + a a  (,). 

From (3.3)-{]3.5) we obtain integral relationships for the compression shock 

pu = p_u .  + (Din; ( 3 . 7 )  

P us + Pv = P -u2- + P v -  + (D"; 

puE = p_u_E .  + (D E. 

(3.8) 

(3.9) 

To 
the diffusion approximation [i] : 

Pp = pR~T,  Bp = R / ( i  + • • = pJpg. 

4. The solution of (3.4) for Cp = const and taking account 
(3.8), (3.10) is the following 

q (~.,% ) t X 2,, In l e~u ~ + csu + e, I + k ~ --  c~ I/c~ - 4~q 

In 2c2u + c3 --  ~/ c~ --  4%c 4 ] 
X 2c~u + % + ]/  c~ --  4c2c a i x + const~: 

R, (p_u_E_ + (DE),: 

rhm'~ . ~q dtl)m 

4 

close the system (3.1)-(3.9) we write the equation of state within the framework of 

(3.10) 
of the dependences (3.6)- 

(a.1) 

Another solution for 
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has no physical meaning. The solution of (4.1) is realized by iterations in the integral Ju 
and conditions ahead of the shock and the Maxwell distribution were selected in a zero approx- 
imation. 

A particle-Maxwell sphere model, i.e., 

[ 90M_ . (M~--i)' ~"~']-1 
P= 3+M  Y 

was taken in all the computations presented, as were also the characteristic quantities on 
the micro- and macrolevels, equal to 

�9 z = A q m / A p ,  g~ = A q .  

Figure 3 shows the change in the relative shock thickness as a function of M_ for clean 
and dusty air (dashed and solid lines, respectively). Again polystyrene with a 2 ~m particle 
diameter and 0.01 volume concentration was chosen as particles. As for the kinetic descrip- 
tion, the presence of particles results in an increase in compression shock thickness. If 
(2.5) is considered for this approach, we see that the particles exert the greatest influence 
on the velocity and density, as in the kinetic approach. 

Figure 4 shows a comparison of the results obtained when utilizing the kinetic and hydro- 
dynamic approaches, and experimental data [17, 18] are presented for a pure gas. Lines 1-3 
are the results of the hydrodynamic approach, the Mott-Smith method and the Liepmann method, 
respectively, for a flux with 2-Dm-diameter polystyrene particles (0.01 volume concentration). 
Given for comparison are the dependences of the dimensionless transit length (I/L) on M_ for 
pure air without taking account of the dissipative terms (4 is the hydrodynamic approach and 
5 is the Mott-Smith model). Curves 6 and 7 are data for pure air with dissipative terms 
taken into account (the hydrodynamic approach and the Mott-Smith model). It can be noted 
that within the framework of the approach used above the domain of application of the models 
is increased somewhat: the range of the hydrodynamic description of the shock structure grows 
to M_ z 2.5, while the kinetic models describe a shock to M_ z 2 more accurately. This clo- 
sure of the application of the models can be explained by taking account of the dissipative 
components in the kinetic equation, which results, in turn, in the appearance of additional 
diffusion and convective transfer terms in the mass, momentum, and energy conservation 
equations. 
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DYNAMICS OF DROPLET BREAKUP IN SHOCK WAVES 

V. M. Boiko, A. N. Papyrin, and S. V. Poplavskii UDC 532.529.5/6 

Study of the principles of acceleration and fragmentation of droplets during interaction 
with a high speed gas flow is of interest because of its important practical applications (for 
example, atomization of liquids in various technological processes, energy generation equip- 
ment, detonation wave propagation in gas-droplet systems, etc.). In particular, the problem 
of heterogeneous detonation in a gas-droplet system requires detailed study of the processes 
of acceleration, deformation, fragmentation, ignition, and combustion of droplets within 
shock waves at Mach numbers M = 2-6 for Weber numbers We = pu=d0 o-z > 103 and Reynolds num- 
bers Re = pud0~ -I > 103 . Here p, u, ~ are the density, velocity and viscosity of the gas, 
d 0 is~the initial droplet diameter, and o is the liquid surface tension. 

Numerous studies of droplet interaction with shock waves are reflected in reviews 
[i-3], which considered characteristic regimes of droplet breakup and indicated corresponding 
parameter ranges. Thus, according to [2], for We > 103 , Re > i0 ~) corresponding to the ex- 
plosive droplet decay range, the following pattern exists. Over a time interval 0 < t < t o 
(where t o = d0p~~176 p~ being the liquid density) a droplet collapses into a disk of 

size d - 3d 0. At time t ~ (0.1-0.5)t 0 a thin layer of liquid begins to break away from the 
equatorial region of the deformed drop and then breaks into pieces. The dimensions of the 
microparticles thus formed are in the range d ~ 1-10~m [4, 5]. Due to instability of the 
phase separation boundary at t = t o explosive decay of the disk begins, reaching its greatest 
velocity at t ~ (1.5-2)t 0 and ending at t ~ (4-5)t 0. The dimensions of the particles formed 
by this explosive decay are of the order of the thickness of the disk into which the droplet 
was deformed at the time of maximum deformation d ~ (0.1-0.2)d 0 [i]. The nucleus of the dis- 
integrating drop moves along a trajectory xd0 -I ~ (0.5-1.4)t2t0 -2 [6]. However, despite the 
large number of experiments which have been performed, many questions concerning droplet 
breakup in shock waves remain little studied. Among these, in particular, are the effect of 
viscosity on droplet destruction dynamics, the size of the microparticles formed, the process 
of evaporation of the disintegrating droplet, etc. 
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